1	ILLINOIS POLLUTION CONTROL BOARD
2	August 17th, 2006
3	TM THE MATTER OF
4	IN THE MATTER OF:)
5	PROPOSED NEW 35 ILL. ADM.) R06-25 CODE 225 CONTROL OF EMISSIONS)
6	(Rulemaking-Air)) FROM LARGE COMBUSTION SOURCES)
7	(MERCURY),
8	TRANSCRIPT OF PROCEEDINGS held
9	in the above-entitled cause before Hearing
10	Officer Marie E. Tipsord, called by the
11	Illinois Pollution Control Board, pursuant
12	to notice, taken before Cheryl L.
13	Sandecki, CSR, RPR, a notary public within
14	and for the County of Lake and State of
15	Illinois, at the James R. Thompson Center,
16	100 West Randolph, Assembly Hall, Chicago,
17	Illinois, on the 17th day of August, A.D.,
18	2006, commencing at 9:00 a.m.
19	
20	
21	
22	
23	
24	

1	APPEARANCES:
2	
3	SCHIFF, HARDIN, LLP 6600 Sears Tower
3	Chicago, Illinois 60606
4	(312) 258-5646 BY: MS. KATHLEEN C. BASSI
5	MR. STEPHEN J. BONEBRAKE MR. SHELDON A. ZABEL
6	
7	Appeared on behalf of the Dynegy and Midwest Generation;
8	
9	ILLINOIS ENVIRONMENTAL PROTECTION AGENCY, 1021 North Grand Avenue East P.O. Box 19276
10	Springfield, Illinois 62794-9276
11	(217) 782-5544 BY: MR. JOHN J. KIM MR. CHARLES E. MATOESIAN
12	
13	- AND -
14	AYRES LAW GROUP 1615 L Street, N.W.
15	Suite 1350 Washington, DC 20036
16	(202) 452-9200 BY: MR. RICHARD E. AYRES
17	Appeared on behalf of the IEPA;
18	
19	
20	
21	
22	
23	
24	

1	APPEARANCES: (Continued)
2	
3	ENVIRONMENTAL LAW PROGRAM, CHICAGO LEGAL CLINIC 205 West Monroe Street
4	Fourth Floor Chicago, Illinois 60606
5	(312) 726-2938 BY: MR. KEITH I. HARLEY
6	BY- MR. KEITH I. HARLEY
7	SORBENT TECHNOLOGIES CORPORATION 1664 East Highland Road
8	Twinsburg, Ohio 44087 (330) 425-2354
9	BY: MR. SID NELSON JR.
10	McGUIRE, WOODS 77 West Wacker Drive
11	Suite 4100
12	Chicago, Illinois 60601-1815 (312) 849-8100
13	BY: MR. JEREMY R. HOJNICKI
14	
15	ILLINOIS POLLUTION CONTROL BOARD:
16	Ms. Marie Tipsord, Hearing Officer Ms. Andrea S. Moore, Board Member
17	Mr. G. Tanner Girard, Acting Chairman Mr. Anand Rao, Senior Environmental
18	Scientist Mr. Nicholas J. Melas, Board Member
19	Mr. Thomas Fox, Board Member Mr. Thomas Johnson, Board Member
20	Mr. Inomas comison, board Member
21	
22	
23	
24	

1	HEARING OFFICER TIPSORD: Good
2	morning, ladies and gentlemen. This is
3	day four. And we are continuing with the
4	testimony of Mr. Cichanowicz. And I
5	believe we are on question No. 62. Does
6	anybody have any preliminary matters
7	before we start?
8	MR. ZABEL: No.
9	HEARING OFFICER TIPSORD: I do want
10	to remind everyone we have a board meeting
11	here in Chicago today. So we will go
12	until 10:30. And at 10:30 we will break
13	and we will come back at 1:00. And if it
14	is okay with everybody, we are going to
15	come back at
16	1:00 o'clock. If we can do a break around
17	quarter to 3:00 or so, then we might go
18	until 5:30 tonight depending upon where a
19	natural break might occur. But to give
20	you a heads up, 5:30 may be where we go.
21	MR. ZABEL: I am worried about the
22	travel schedules of some of our witnesses.
23	If we go an extra half hour, that might
24	help.

1	HEARING OFFICER TIPSORD: With that
2	in mind question, No. 62. And I remind
3	you you are still under oath.
4	MR. CICHANOWICZ: Question 62, you
5	state on page 34 of your testimony that
6	public pronouncements by suppliers of
7	bromine that 100 percent price increases
8	in bromine are possible further suggest
9	that prices may not be stable. It should
10	be noted there is only one source of
11	bromine in U.S., saline aquifers in
12	Arkansas, so transportation and supply
13	conditions could be constrained. What is
14	the basis for this statement that
15	transportation could be constrained?
16	The availability of any bulk
17	material at a single source can lead to
18	bottlenecks in supply unless a wide
19	variety of transportation options are
20	available. Given the coal transportation
21	bottlenecks experienced in the U.S. in
22	2005 and 2006, particularly with small
23	generators that are captive to a single or
24	limited number of transportation sources,

1	it is important to ensure that multiple
2	transportation options are open to bromine
3	suppliers.
4	HEARING OFFICER TIPSORD: Will we
5	have follow-up, Mr. Ayers?
6	MR. AYERS: Yes. Mr. Cichanowicz,
7	are you an expert in the area of bromine
8	manufacture and the transportation?
9	MR. CICHANOWICZ: No.
10	MR. AYERS: So what is the basis for
11	your statement that prices will increase
12	by a hundred percent.
13	MR. CICHANOWICZ: There was a couple
14	of quotes or statements that I basically
15	pulled off the Internet with some
16	representatives of some companies
17	basically stating that the price
18	escalation could be on the way.
19	MR. AYERS: Are you sure it was for
20	bulk purified bromine rather than bromine
21	derived chemicals such as fire retardants,
22	which have seen substantial increases?
23	MR. CICHANOWICZ: My understanding
24	was it was for bulk bromine.

1	MR. AYERS: Thank you.
2	HEARING OFFICER TIPSORD: Mr. Nelson?
3	MR. NELSON: Sid Nelson. Are you
4	aware that Dow Chemical produces bromine
5	in Michigan.
6	MR. CICHANOWICZ: No.
7	MR. NELSON: How many major bromine
8	suppliers are there in the U.S.?
9	MR. CICHANOWICZ: I don't know how
10	many there are. The basis of my statement
11	is on with my knowledge or information
12	that the sources the majors sources of
13	bromine are in two adjacent counties in
14	Arkansas. And that's the basis of it.
15	MR. NELSON: There are multiple
16	suppliers that get bromine from that
17	deposit; is that correct? It is not just
18	one producer?
19	MR. ZABEL: I am objecting. He is
20	testifying.
21	HEARING OFFICER TIPSORD: Mr. Zabel,
22	if he is that correct we and Ms. Bassi
23	has been guilty of that as well.
24	MS. BASSI: Sorry.

1	HEARING OFFICER TIPSORD: In
2	fairness
3	MR. ZABEL: I will object to her
4	next time.
5	HEARING OFFICER TIPSORD: In
6	fairness.
7	MR. CICHANOWICZ: Yes, I believe
8	there are multiple suppliers of bromine.
9	MR. NELSON: Thank you.
10	MR. AYERS: I have a further
11	follow-up.
12	HEARING OFFICER TIPSORD: Mr. Ayers?
13	MR. AYERS: We have an exhibit that
14	we would like to introduce, which would be
15	106.
16	HEARING OFFICER TIPSORD: I have
17	before me a document titled "Bromine Data
18	in Thousand Metric Tons of Content Unless
19	Otherwise Noted" prepared by Phyllis A.
20	Lyday.
21	MR. AYERS: Yes.
22	HEARING OFFICER TIPSORD: No other
23	information on who
24	MR. AYERS: Madam Chairwoman, this

Т	is from the o.s. Georogical Survey. It
2	says USGS.gov. And on the other side at
3	the bottom you see the citation "U.S.
4	Geological Survey, Mineral Commodity
5	Summaries 2006."
6	HEARING OFFICER TIPSORD: I have the
7	two-sided bromine and then the second.
8	MR. AYERS: Yes.
9	HEARING OFFICER TIPSORD: The first
10	one is pages 40 and 41.
11	MR. AYERS: Of the U.S. Geological
12	Survey, Mineral Commodity Summaries,
13	January 2006.
14	HEARING OFFICER TIPSORD: If there
15	is no objection, we will mark this as
16	Exhibit 106. Seeing none, it is
17	Exhibit 106.
18	MR. AYERS: According to the page
19	that says bromine at the top well, the
20	one that says Phyllis Lyday at the bottom,
21	page 40, what happened the price trend
22	since 2001 for bromine?
23	MR. CICHANOWICZ: It has gone up
24	from 67 to 81.

1	MR. AYERS: And it has gone up all
2	years.
3	MR. CICHANOWICZ: Yes.
4	MR. AYERS: And wasn't the 2002
5	price higher than the price in 2005?
6	MR. CICHANOWICZ: Yes.
7	MR. AYERS: According to this
8	report, bromine is available in the U.S.
9	from Michigan as well as Arkansas and
10	abroad from Israel and other countries; is
11	that correct?
12	MR. CICHANOWICZ: I haven't read it,
13	but it looks like the first paragraph says
14	that.
15	MR. AYERS: Thank you. Would you be
16	concerned that we are running out of
17	bromine if you looked at this chart?
18	MR. CICHANOWICZ: No. I'm not
19	concerned we are running out of bromine
20	and the annual production is on this
21	chart. Yes, that's in excess of 200,000
22	tons per year. And when you look at the
23	amounts, it is basically not very much.
24	If you take the amount of activated carbon

	narogenaced carbon and put it into the	
2	precipitators in Illinois at the TTBS	
3	level, you get a plus one percent of the	
4	annual production.	
5	So in terms of magnitude, it's not.	
6	But my concern was on transportation. And	
7	I say that because, you know, the power	
8	industry always seems to be the guy at the	
9	end of the transport sector that gets the	
10	fuzzy angle all the time. The coal	
11	deliveries are always made because of	
12	limited transportation. Tromine is a	
13	compound in Wyoming that some people are	
14	using sparingly and perhaps may evolve	
15	into FGD control. And the transport	
16	distances are great.	
17	And it is not so much price, but it	
18	is bottlenecks in supply. And it was the	
19	only purpose for pointing this out. If	
20	there are alternative sources in Michigan,	
21	that's great.	
22	MR. AYERS: We have a second item	
23	that we I think it was handed out	
24	which says "Mineral Information Institute"	

1	at the top.
2	HEARING OFFICER TIPSORD: Yes. And
3	this we will mark as Exhibit 107 if there
4	is no objection. Seeing none, it is
5	Exhibit 107.
6	MR. AYERS: The first sentence after
7	the sources, I take it you agree with the
8	sentence that bromine sources are
9	MR. ZABEL: I am sorry, Mr. Ayers, I
10	cannot hear you.
11	MR. AYERS: This is not usually a
12	problem. Under the word sources
13	MR. CICHANOWICZ: Sources or world
14	resources?
15	MR. AYERS: No, just sources, you
16	may have already answered this question.
17	I just wanted you to look at the first
18	sentence there and read that and let us
19	know whether you agree with it. But I
20	think you said you agree with it, that the
21	resources are basically unlimited.
22	MR. CICHANOWICZ: I accept the first
23	statement on that paragraph.
24	MR. AYERS: That's all my questions.

1	HEARING OFFICER TIPSORD: Mr. Nelson?
2	MR. NELSON: Just one quick
3	question. Is there a need for the power
4	plant to actually get bromine or would the
5	bromine go to the carbon producer, which
6	would brominate the carbon and the
7	distribution would simply be bulk trucks
8	to the various utilities.
9	MR. CICHANOWICZ: I am worried about
10	the fact that, yes, the producers are the
11	ones who are having a problem. But you
12	know it it always ends up in the lap of
13	the guy who is trying to make it.
14	MR. NELSON: Is it quite possible to
15	actually put the brominate production
16	facilities in Arkansas or Michigan?
17	MR. CICHANOWICZ: I imagine so.
18	MR. ZABEL: I believe he answered 63
19	in response to Mr. Ayres.
20	MR. AYERS: Yes, I think that's
21	right.
22	HEARING OFFICER TIPSORD: Question
23	64.
24	MR. CICHANOWICZ: If it is only a

1	Tew percent, won t any cost impact from
2	the price changes you predict for bromine
3	be fairly muted?
4	Yes, the cost may be muted. But
5	again my concern was for the limited
6	physical source in transportation
7	constraints. And with multiple suppliers
8	and sources, that is mitigated as well.
9	MR. AYERS: I think question 65 has
10	been asked and answered.
11	HEARING OFFICER TIPSORD: Okay.
12	Question 66.
13	MR. CICHANOWICZ: On page 36 of your
14	testimony, you state that "the role of
15	coal blending on mercury removal
16	performance of ACI with an ESP can be
17	inferred by comparing data from Ameren's
18	Meramac and Detroit Edison's Monroe
19	Station. Both of the tested units
20	featured ESPs of similar SCA but fired
21	different fuels. Meramac exclusively
22	fires PRB, while Monroe fires PRB with a
23	40 percent blend of bituminous coal. Does
24	this demonstrate that fuel characteristics

1	play a very significant role in
2	performance?
3	Yes, these results show that fuel
4	type is important.
5	MR. AYERS: I think Nos. 67 and 68
6	have been responded to by the tables and
7	exhibits that have been provided
8	yesterday.
9	HEARING OFFICER TIPSORD: Which were
10	85, 86 and 87 I believe?
11	MR. AYERS: Yes, that's right. But
12	we do have some questions that go to that.
13	Mr. Cichanowicz, yesterday you
14	testified that larger ESPs were associated
15	with longer lengths of ductwork, did you
16	not?
17	MR. CICHANOWICZ: My statements in
18	the satellite images suggest that large
19	ESPs tend to have longer inlet ductwork.
20	MR. AYERS: That's why you speculate
21	that while ESP size does not seem to
22	significantly impact the mercury removal
23	in the ESP, the longer duct runs
24	associated with ESP may; is that right?

1	MR. CICHANOWICZ: The longer duct
2	runs associated with larger ESPs may,
3	that's correct.
4	MR. AYERS: And you testified that
5	you had no specific data from Illinois or
6	elsewhere to support this speculation,
7	correct?
8	MR. CICHANOWICZ: That's correct. I
9	do not have quantitative data defining
10	ductwork runs and dimensions.
11	MR. AYERS: Are you aware of the
12	review of plant layouts conducted by the
13	Illinois EPA for this proceeding?
14	MR. CICHANOWICZ: I did not review
15	it.
16	MR. AYERS: Are you aware that
17	Waukegan 17 has an ESP with an SCA of
18	about 131, a small SCA?
19	MR. CICHANOWICZ: I believe that was
20	one of the images from yesterday.
21	MR. AYERS: Do you know what the
22	approximate length of the duct between the
23	air preheater and the ESP at Waukegan 17
24	was found to be by Illinois EPA?

1	MR. CICHANOWICZ: No, I do not.
2	MR. AYERS: Would a hundred feet
3	seem possible?
4	MR. CICHANOWICZ: That would sound
5	like a longer number than I would expect.
6	But I did not go to the plant.
7	MR. AYERS: Do you know what the SCA
8	is for Will County No. 4 for that ESP?
9	MR. CICHANOWICZ: No.
10	MR. AYERS: Or what the approximate
11	length of the duct is between the air
12	preheater and the ESP in Will County 4?
13	MR. CICHANOWICZ: No, I do not.
14	MR. AYERS: Would 80 feet seem
15	possible?
16	MR. CICHANOWICZ: It would seem
17	longer than I would expect from my
18	experience. But I have not been to the
19	site.
20	MR. AYERS: Is the Will County 4
21	than a larger boiler than Waukegan 17?
22	MR. CICHANOWICZ: From memory I
23	can't reflect that.
24	MR. AYERS: Is it a newer ESP than

1	Waukegan?
2	MR. CICHANOWICZ: I don't know.
3	MR. AYERS: Did you know that
4	Hennipen 2 with ESP with SCA of 125 has
5	about 100 feet of ductwork between the air
6	preheater and the ESP?
7	MR. CICHANOWICZ: No.
8	MR. AYERS: So isn't it really true
9	that the length of the ductwork is
10	determined entirely by site specific
11	characteristics and can't be related to
12	ESP size?
13	MR. CICHANOWICZ: I would have to
14	review the results of the Illinois study
15	before I can come to a conclusion like
16	that.
17	MR. AYERS: But the results as we
18	have discussed them, they would be
19	inconsistent with the hypothesis that you
20	advanced in your testimony, though,
21	correct?
22	MR. CICHANOWICZ: If those results
23	held up and I were to review them, they
24	would be somewhat inconsistent.

1	MR. AYERS: Can we turn to
2	figure 5-2?
3	MR. GIRARD: Mr. Ayers, before you
4	do that, could I just ask a question? It
5	probably goes to the agency. If there is
6	a study of Illinois power plants that has
7	a spreadsheet with ESP size and duct
8	length and other information, is that in
9	the record already?
10	MR. KIM: I believe the document
11	John Kim for the Illinois EPA. I believe
12	the document that has the information that
13	we are referring to is the document that
14	was provided in two forms to the Board,
15	one in a redacted form for security
16	reasons and one in a complete form for
17	public viewing.
18	The document that is that has
19	been requested to be withheld from public
20	view has I believe those figure the
21	relevant figures, schematics and distances
22	that we are making reference to.
23	HEARING OFFICER TIPSORD: And that
24	was in the post-hearing comment provided

1	to the Board and it is being held
2	confidential in our clerk's office.
3	MR. KIM: That's correct.
4	MR. GIRARD: So the information is
5	on a plant-by-plant basis rather than
6	being on some spreadsheet where you have
7	pulled it all together?
8	MR. KIM: That's correct. The
9	manner in which that was compiled, my
10	understanding is I think we testified
11	to this at the first hearing was that
12	copies I believe had already been provided
13	to the utilities shortly after the
14	Illinois EPA inspectors compiled the
15	information. It was just the complete
16	report itself was not provided to the
17	board until the post-hearing comment
18	period.
19	MR. GIRARD: Thank you.
20	MR. AYERS: We would like to turn to
21	figure 5-2 if we might.
22	HEARING OFFICER TIPSORD: And,
23	Mr. Ayers, you are going to be specific
24	MR. AYERS: Yes, 5-2. I'm sorry I

1	think one of the views used was
2	Exhibit 87.
3	HEARING OFFICER TIPSORD: Which is
4	figure 5-2 in additional data, Exhibit 873
5	MR. AYERS: Yes. Mr. Cichanowicz,
6	would it be fair to say that the data in
7	this figure provides the basis for your
8	hypothesis that ESP size could be related
9	to mercury removal?
10	MR. CICHANOWICZ: The data in this
11	figure plus again my observations of the
12	inlet ductwork for some of the modified
13	ESPs and looking at other demonstrations,
14	again that is the basis.
15	MR. AYERS: So could we go through
16	in some question 69 and some of the
17	additional questions that we would like to
18	ask all address the data represented in
19	this table. We would like to go through
20	that in some detail. I think a way to
21	start is just for you to answer question
22	69 and then we will go from there.
23	MR. CICHANOWICZ: 69, you state on
24	page 38 of your testimony that "in

1	summary, although figure 5-2 mixes
2	variables on one chart, sorbent type,
3	duration of test, mass injection rate and
4	ESP design, the resultant trend suggests
5	that major ESP upgrades are required to
6	derive 90 percent mercury removal." Does
7	that statement take into consideration
8	these and other critical factors such as
9	fuel type?
10	No. The plot represented in
11	figure 5-2 represents a global overview of
12	the results achieved in a large number of
13	demonstrations, displayed according to one
14	ESP design feature.
15	Question A, do you agree that sulfur
16	and coal type have significant effects on
17	mercury capture?
18	Yes, coal type and sulfur content
19	are important in determining mercury
20	capture.
21	Question B, does this figure in any
22	way distinguish those effects from others?
23	No.
24	Question C, do not bituminous coals

1	tend to have higher sulfur levels than PRB
2	coals? Yes.
3	D, if so, do bituminous coals not
4	achieve as much removal at the same
5	sorbent rate?
6	The relationship between coal type,
7	sorbent type and mercury removal is
8	application specific. It is generally
9	true that as sulfur content of coals
10	increases, as it does with bituminous
11	coals, with all factors being equal, the
12	higher SO3 generated by combustion will
13	restrict Hg removal compared to a
14	subbituminous, particularly a PRB, coal.
15	E, do you agree that sulfur and coal
16	type have significant effects on the
17	sizing of an ESP? All factors being
18	equal, yes.
19	F, does this figure in any way
20	distinguish those effects from others?
21	No, it does not.
22	G, are not the ESP
23	MR. AYERS: I would like to
24	interject at this point with a question.

1	MR. CICHANOWICZ: Pardon?
2	MR. AYERS: I am sorry, may I
3	interject a question at this point? Would
4	the fuel type term determine whether or
5	not halogenated or other sorbents were the
6	best ones to use? I should say would the
7	fuel type?
8	MR. CICHANOWICZ: Yes, they would.
9	MR. AYERS: Okay. Thank you.
10	MR. CICHANOWICZ: G, are not the
11	ESPs designed for bituminous coals
12	generally smaller than those for PRB
13	coals? All factors being equal, yes.
14	MR. AYERS: Now, could I ask a few
15	questions to follow up on that? This
16	focuses on the data points in the table.
17	First, are data points 4, 8 and 12, which
18	are in the bottom middle, if you will of
19	the chart, close together, are they the
20	results of tests with untreated carbon on
21	western coals?
22	MR. CICHANOWICZ: Test 4 is Leland
23	Olds.
24	MR. AYERS: Leland Olds is 4.

Т	Pleasant Prairie is 8. And Coal Creek is
2	12.
3	MR. CICHANOWICZ: If you don't mind,
4	I would like to read through just to make
5	sure.
6	MR. AYERS: Sure, of course.
7	MR. CICHANOWICZ: Four is Leland
8	Olds lignite fired and that is not a
9	halogenated sorbent test. Eight is
10	Pleasant Prairie, PRB coal. That is not
11	halogenated sorbent. Twelve is Coal
12	Creek. It's a TOXECON, which is a little
13	bit different than a conventional ESP and
14	North Dakota lignite that is not a
15	halogenated sorbent.
16	HEARING OFFICER TIPSORD: Does that
17	mean it is not treated it is not a
18	treated carbon sorbent?
19	MR. CICHANOWICZ: My answer is it is
20	not treated. Correct.
21	HEARING OFFICER TIPSORD: Then I
22	have a question before we go any further.
23	Yesterday I asked you if the legend that
24	was on Exhibit 86 carried to 87 and you

1	indicated that was correct. It looks to
2	me that a pink box is indicated as a
3	treated carbon sorbent.
4	MR. CICHANOWICZ: Okay. That's my
5	mistake. That's my mistake. What I had
6	meant was the descriptors and the numbers
7	were the same. I incorrectly answered
8	your question yesterday, Madam Chairwoman.
9	HEARING OFFICER TIPSORD: So the
10	little box with pink in it does not mean
11	the same thing on Exhibit 87 that it means
12	on Exhibit 86?
13	MR. CICHANOWICZ: I regret to inform
14	you that's true. I can I can fix that
15	legend and make it clear.
16	HEARING OFFICER TIPSORD: Okay.
17	That would be helpful.
18	MR. CICHANOWICZ: Because otherwise
19	you are lost.
20	HEARING OFFICER TIPSORD: As I was,
21	obviously, by my questions.
22	MR. ZABEL: We can file a corrected
23	version of Exhibit 87.
24	HEARING OFFICER TIPSORD: Great,

1	thank you.
2	MR. AYERS: If halogenated carbon
3	had been used on these units so that they
4	were correctly taken, would you have
5	expected a higher removal than what you
6	see here?
7	MR. CICHANOWICZ: Yes, I would have
8	expected a higher removal.
9	MR. AYERS: Don't points 4, 4-B and
10	4-C, which are all for the same Leland
11	Olds plant, do you see them there, I think
12	4 is probably incorrectly pink. But then
13	4-B and 4-C go up a straight line because
14	the straight line is the indicator of the
15	SCA the size of the SCA of the ESP.
16	But you see the first four at about
17	67 percent, second one a little under 80
18	and the last one at 93?
19	MR. CICHANOWICZ: Yes.
20	MR. AYERS: So do those demonstrate
21	the point about sorbent injection
22	halogenated sorbent injection pretty
23	clearly?
24	MR. CICHANOWICZ: Well, 4-B again

T	I need to see it and read it. Leland
2	Olds, that uses a treated sorbent. And
3	4-C I believe is the Alstom Mer-Cure. And
4	that is a treated sorbent.
5	MR. AYERS: So looking at that and
6	the points that we were looking at before,
7	you can conclude that the points No. 4, 8
8	and 12 would be considerably higher up if
9	there they were treated rather than
10	untreated sorbents.
11	MR. CICHANOWICZ: Treated sorbents
12	will increase mercury removal, yes.
13	MR. AYERS: Okay. Now let's look at
14	Nos. 12 and 17. Twelve is Coal Creek and
15	17 is Independence. Do you have those?
16	MR. CICHANOWICZ: Yes, I do.
17	MR. AYERS: Those are TOXECON II
18	units, are they not?
19	MR. CICHANOWICZ: Yes, they are.
20	MR. AYERS: So we know that's still
21	under development unlike unlike the
22	sorbent injection upstream of the ESP?
23	They have a different type of injection
24	system, do they not?

1	MR. CICHANOWICZ: It is a different
2	injection system and the technology is
3	still developing.
4	MR. AYERS: Now, points 5 and 16,
5	Lausche and Conesville
6	MR. CICHANOWICZ: Yes.
7	MR. AYERS: those are high sulfur
8	coals, are they not?
9	MR. CICHANOWICZ: Those are high
10	sulfur coals.
11	MR. AYERS: And we know the
12	condition of high sulfur is difficult and
13	that probably explains the low mercury
14	reduction, correct?
15	MR. CICHANOWICZ: It would be a
16	contributing factor, yes.
17	MR. AYERS: Now looking at Nos. 2,
18	14, 6 and 15, that's Monroe, Lee, Allen
19	and Yates 6
20	MR. CICHANOWICZ: Repeat those
21	please, two?
22	MR. AYERS: Yes. Number 2, Monroe;
23	No. 14, Lee; No. 6, Allen; and No. 15
24	Yates 6

1	MR. CICHANOWICZ: Yes.
2	MR. AYERS: these are all
3	bituminous units, correct?
4	MR. CICHANOWICZ: Yes.
5	MR. AYERS: And we know that
6	bituminous units are harder to control
7	than western coals due to the sulfur,
8	correct?
9	MR. CICHANOWICZ: That is true, yes.
10	MR. AYERS: So the fact that those
11	four plants, Nos. 2, 14, 6 and 15, are a
12	little lower in removal than the western
13	coal units with halogenated sorbents, but
14	still get 85 percent or better, is related
15	to the fuel and not the ESP size, correct?
16	MR. CICHANOWICZ: Well, actually
17	Monroe is a blend of PRB. It is
18	60 percent PRB and 40 percent bituminous
19	coal. So I would be a little careful in
20	generalizing in saying it is a bituminous
21	coal. But it does have a fair amount of
22	bituminous in it.
23	MR. AYERS: Do you know what the SO2
24	level is in that blended coal?

1	MR. CICHANOWICZ: No, I do not.
2	MR. AYERS: Would it be a surprise
3	if it were over 1.25 pounds per million
4	BTU?
5	MR. CICHANOWICZ: Well, it is
6	combined. So it should be low.
7	MR. AYERS: But you do agree in
8	general that of these four units they are
9	higher sulfur units and that the higher
10	sulfur increases the difficulty of
11	achieving mercury reduction?
12	MR. CICHANOWICZ: That is correct,
13	yes.
14	MR. AYERS: If there were a
15	relationship between ESP size and mercury
16	removal, you would expect Monroe 2 to have
17	lower than Allen 6, wouldn't you? I am
18	sorry, Monroe point No. 2 to have lower
19	than Allen point No. 6? Do you see that
20	points No. 2 and 6 on the figure are both
21	at 85 percent removal even though the SCA
22	of point No. 2 is under 300 and that of
23	point No. 6 is well over 400, perhaps 5003
24	MR. CICHANOWICZ: Well, to the

1	extent that you can make a single point
2	comparison, you know, perhaps. But, you
3	know, again it is two points. And as I
4	have always said, there is things that
5	could be associated with other factors
6	other than SCA. And I don't know enough
7	about Allen and Monroe itself to be able
8	to line up all those factors.
9	MR. AYERS: But other things being
10	equal, you would expect that trend to show
11	if the hypothesis were correct, right?
12	MR. CICHANOWICZ: Yes.
13	MR. AYERS: The fact that 2-D,
14	Monroe with the SCR is a little lower than
15	2, Monroe with the SCR bypass is no
16	surprise, right?
17	MR. CICHANOWICZ: Well, 2-D is
18	different in a that's a 30-day test.
19	It was the only 30-day test left under
20	Monroe. So what was the question again?
21	MR. AYERS: The question was since
22	2-D was Monroe with the SCR operating and
23	2 was Monroe with the SCR bypass, it's no
24	surprise that 2 shows higher removal than

1	2-D, isn't that right, due to the
2	oxidation of SO2, SO3 in an SCR unit?
3	MR. CICHANOWICZ: But with what we
4	are perhaps. But also 2-D was a 30-day
5	test that was run at the end of a
6	parametric test and 2 was the results of a
7	series of parametric tests.
8	MR. AYERS: Is there any reason why
9	you expect that to be different, though?
10	Any reason that would be commensurate with
11	the known effects of having the SCR unit
12	on and the oxidizing effect of the SCR
13	unit?
14	MR. CICHANOWICZ: I want to explain
15	that there is we are changing two
16	things at once, 30-day test at 2-D versus
17	short-term performance tests at 2 and the
18	role of SCR. And the 30-day test and the
19	short-term tests, the results you know,
20	the results were different because they
21	are different test medians.
22	So we are changing two things at
23	once. But I will say that with the role
24	of SCR, basically, I would expect to have

1	an impact, yes.
2	MR. AYERS: So you would expect that
3	to be a factor.
4	MR. CICHANOWICZ: Yes.
5	MR. AYERS: Brayton Point and Salem
6	Harbor, and I don't have are they on
7	this table or figure? I think they are
8	not.
9	MR. CICHANOWICZ: Brayton is point 7
10	and it is on the table.
11	MR. AYERS: And Salem Harbor?
12	MR. CICHANOWICZ: That is 9.
13	MR. AYERS: Okay. They are also
14	bituminous and had 90 percent removal.
15	This was with the benefit of the high
16	carbon fly ash, correct?
17	MR. CICHANOWICZ: The benefit of
18	high carbon fly ash?
19	MR. AYERS: For mercury removal.
20	MR. CICHANOWICZ: The issue is the
21	high carbon fly ash.
22	MR. AYERS: Take out all the
23	modifiers. But the carbon, no doubt,
24	played a role in this?

1	MR. CICHANOWICZ: I believe it did,
2	yes.
3	MR. AYERS: So with the exception of
4	Yates 1 Yates, which is point No. 1, we
5	can pretty much explain the relationship
6	between all these points with factors
7	other than ESP size; isn't that correct?
8	MR. CICHANOWICZ: I wouldn't say you
9	can explain away all the differences. I
10	have just said that I believe all the
11	things that have been stated are true, and
12	they are certainly factors. Okay. But I
13	don't know that that explains away all of
14	the differences. It might, but I don't
15	know that that's the case.
16	MR. AYERS: But you have agreed that
17	each of these factors would alter the way
18	these points show on this stable?
19	MR. CICHANOWICZ: I completely
20	agree, yes.
21	MR. AYERS: And if altered in that
22	way, they would this figure would tend
23	to show very little, if any, relationship,
24	isn't that correct, between the mercury

1	removal and SCA?
2	MR. CICHANOWICZ: It depends on the
3	extent that those factors play out. If
4	they played out 100 percent, as you
5	described them to be, the answer would be,
6	yes, there would be no relationship. But
7	we don't know that. And that's the
8	purpose of the additional demonstrations.
9	MR. AYERS: Well, we do know from
10	looking at 4, 4-B and 4-C, you can see in
11	that the clear impact of halogenated
12	sorbents. And 4-C lines up with 11, even
13	though the SCA is far less and probably
14	maybe a third as big. I am trying to read
15	the log scale here.
16	MR. CICHANOWICZ: Treated sorbents
17	make a difference in Leland Olds, correct.
18	MR. AYERS: Okay. Thank you.
19	HEARING OFFICER TIPSORD: Are you
20	ready then for question 70?
21	MR. AYERS: No, I am sorry, we
22	aren't.
23	MR. CICHANOWICZ: That's okay. I
24	thought when you said thank you that you

1	were done.
2	MR. AYERS: We would like to show
3	you exhibit an exhibit presented at the
4	2003 EPA, EPRI, DOE combined power plant
5	air pollution symposium. It was the mega
6	symposium as we discussed yesterday.
7	HEARING OFFICER TIPSORD: I have
8	been handed a document entitled "Results
9	of Activated Carbon Injection Upstream of
10	Electrostatic Precipitators for Mercury
11	Control" by Starns, Bustard, Durham,
12	Martin, Schlager, Sharon Sjostrom, Charles
13	Lindsey and Brian Donnelly. If there is
14	no objection, I will mark this as
15	Exhibit 108. Seeing none, it is
16	Exhibit 108.
17	MR. AYERS: Mr. Cichanowicz, on
18	page 34 of your testimony, you describe
19	modifications to Brayton Point unit 1, is
20	that correct?
21	MR. BONEBRAKE: Madam Hearing
22	Officer, just as a point of clarification,
23	I don't see a date on this exhibit. Is
24	there one, Counsel? Or do we know

1	otherwise what the date of this is?
2	MR. AYERS: We do know what the date
3	is.
4	MR. STAUDT: It is 2003.
5	MR. AYERS: 2003. It is the 2003
6	conference.
7	MR. STAUDT: We have the disk right
8	here.
9	MR. BONEBRAKE: We wanted to know
10	what the date was.
11	MR. AYERS: We can get it for you if
12	you would like.
13	MR. BONEBRAKE: 2003 is fine. I
14	wanted clarification on the date.
15	MR. ZABEL: What page did you want
16	him to reference?
17	MR. AYERS: 34.
18	MR. CICHANOWICZ: I'm sorry, is it
19	table 5-2?
20	MR. AYERS: No. What we are looking
21	at is a description of modifications to
22	Brayton Point unit 1.
23	MR. CICHANOWICZ: On page 34?
24	MR. AYERS: I'm sorry, I think we

1	have the wrong article.
2	MR. STAUDT: It is 37 no. Yeah,
3	37.
4	MR. AYERS: It is page 37. And this
5	is a table about ESP modifications and
6	upgrades, demonstration units.
7	MR. CICHANOWICZ: Yes.
8	MR. AYERS: You state in your
9	testimony that the first ESP at Brayton
10	Point has an SCA of 156. And the second
11	and that's newer ESP has an SCA of
12	403, didn't you?
13	MR. CICHANOWICZ: Yes.
14	MR. AYERS: And these ESPs are
15	connected in series with the gas passing
16	through the smaller ESP and then passing
17	through the larger ESP; is that correct?
18	MR. CICHANOWICZ: That is correct.
19	MR. AYERS: We have if you will
20	look now at figure 2 on page 5 of
21	Exhibit 16?
22	MR. ZABEL: Which exhibit?
23	HEARING OFFICER TIPSORD: 108,
24	Exhibit 108.

1	MR. AYERS: Figure 2 on page 5 of
2	Exhibit 108, which is an isometric view of
3	the ESP arrangement at Brayton Point
4	No. 1?
5	MR. CICHANOWICZ: Yes.
6	MR. AYERS: Do you see the various
7	locations for mercury CEMS that are
8	identified on that?
9	MR. CICHANOWICZ: Yes.
10	MR. AYERS: Do you agree that this
11	arrangement permits measurement of mercury
12	removal across either ESP or both ESPs?
13	MR. CICHANOWICZ: Yes.
14	MR. AYERS: Please now look at
15	figure 3 on page 8 of the paper. Do you
16	agree that this figure shows the mercury
17	removal trends across the second ESP?
18	MR. CICHANOWICZ: Yes.
19	MR. AYERS: From this figure could
20	you state approximately the level of
21	mercury removal across the second ESP when
22	no sorbent is being injected? In other
23	words, the, quote, native removal?
24	MR. CICHANOWICZ: Well, with no

1	sorbent injected, it looks like it is
2	zero.
3	MR. AYERS: Would you agree then
4	that this establishes that no mercury
5	removal occurs across the second ESP when
6	there is no sorbent being injected? I
7	think you have answered that?
8	Now, if you would look at table 3,
9	which is, I believe, on the previous page,
10	page 7, do you agree that this table shows
11	the average native mercury removal across
12	both ESPs of more than 90 percent?
13	MR. CICHANOWICZ: Well, I am looking
14	to make sure it says both ESPs.
15	Location 1, location 4. Well,
16	figure 2 doesn't indicate numbers on the
17	locations. I'm looking at the column on
18	the left of table 3. And it is comparing
19	location 1 versus location 4. And those
20	are certainly, you know, 90 percent,
21	91 percent-type numbers. But it's
22	location 1 versus location 4.
23	HEARING OFFICER TIPSORD: I agree
24	with you it is not readily apparent that

1	this is both sources.
2	MR. ZABEL: I don't think he can
3	answer the question, Mr. Ayres, without
4	it. Maybe if he read the entire paper,
5	that will become clear.
6	MR. AYERS: We will try to locate
7	the locations of that.
8	HEARING OFFICER TIPSORD: It is not
9	clear.
10	MR. AYERS: I may come back to that
11	But if we can take a moment to look?
12	HEARING OFFICER TIPSORD: Let's go
13	forward for now.
14	MR. AYERS: Fine. That would move
15	us to question 70.
16	MR. HARLEY: Before we move on, may
17	I ask a question?
18	HEARING OFFICER TIPSORD: Yes.
19	MR. HARLEY: Good morning,
20	Mr. Cichanowicz. A series of just two or
21	three questions, could you describe the
22	physical characteristics of ductwork at a
23	coal-fired electric generating unit?
24	MR. CICHANOWICZ: The physical

characteristics?

2	MR. HARLEY: Yes. We are all
3	talking about ductwork as if we know what
4	it is. But for purposes of the record, it
5	might be helpful to actually describe what
6	is ductwork at a coal-fired power plant.
7	MR. CICHANOWICZ: That is a very
8	good suggestion. Basically, the ductwork
9	allows the flue gas to transit from point
10	A to point B. But the particular flavor
11	of ductwork we are concerned with is from
12	the last heater exchanger in which you
13	have a chance to recover heat, known as
14	the air chamber, to the inlet of the ESP.
15	And the rule of thumb is you try to
16	keep those velocities at about 40 or
17	45 feet per second. Because if you go
18	less than that, then the ash particles
19	have a habit of dropping out and
20	collecting on the bottom of the ductwork.
21	So the ductwork is designed to at
22	that location to feature about 40 to
23	45 feet per second. And there is a whole
24	series of rules where making turns, like

T	everything else, you need to be careful of
2	something to reduce maldistribution of low
3	carbon. But that's basically what it is.
4	MR. HARLEY: What is a duct? Is it
5	a contained sheet metal unit? Is that
6	what we are talking about?
7	MR. CICHANOWICZ: Yeah, it is
8	basically a pipe, so to speak, or a large
9	duct like you might see in an air
10	conditioning system but it is made out of
11	much heavier steel and depending on the
12	sulfur fuel can be built of materials to
13	resist corrosion from SO3 that could can
14	contaminate.
15	MR. HARLEY: Generally speaking, is
16	it impossible to retrofit additional
17	ductwork on existing coal-fired power
18	plants?
19	MR. CICHANOWICZ: No. It is done
20	all the time. It is just a matter of
21	cost. Usually at that location it is
22	access. It is the reason why you couldn't
23	see the ductwork in the satellite images
24	yesterday is because most of it is buried

1	under the borrer house. And when people
2	do retrofits back there, you have to take
3	apart the boiler house.
4	MR. HARLEY: So for each operator
5	who might choose to have additional
6	ductwork, there would be site specific
7	factors that they would have to take into
8	account before adding this ductwork?
9	MR. CICHANOWICZ: Yes.
10	MR. HARLEY: Do you have an opinion
11	on the relative cost between installing
12	additional ductwork by contrast to
13	installing a larger ESP unit?
14	MR. CICHANOWICZ: No, I don't. It
15	is very site specific. And those kinds of
16	analyses are things I don't normally do.
17	So all I know it is very hard to
18	generalize because they are site specific.
19	MR. HARLEY: Thank you.
20	MR. AYERS: Can we go back to the
21	Brayton Point that we were just
22	discussing.
23	HEARING OFFICER TIPSORD: You know
24	what, when you tilt your head down, we

1	can't hear you at all.
2	MR. AYERS: I'm sorry. It is hard
3	to consult your notes and look up at the
4	same time.
5	Let's go back to table 3
6	HEARING OFFICER TIPSORD: Of
7	Exhibit 108?
8	MR. AYERS: of Exhibit 108 on
9	page 7. The column that's marked location
10	gives two there are two rows to show
11	outputs from measurements at those
12	locations. The first one is labeled
13	inlet, is it not, inlet location 1?
14	MR. CICHANOWICZ: Yes.
15	MR. AYERS: And the outlet the
16	second one is labeled outlet location 4?
17	MR. CICHANOWICZ: Yes.
18	MR. AYERS: If you could turn back
19	to the schematic on page 5 of this
20	exhibit, could you identify where the
21	inlet and outlet would be on that
22	schematic?
23	MR. CICHANOWICZ: Well, I would have
24	to know inlet to what, outlet to what.

1	MR. AYERS: But we are measuring
2	mercury. So presumably it is inlet to the
3	precipitators and outlet from the
4	precipitators, isn't it?
5	MR. CICHANOWICZ: Well, I
6	understand. If we are if the if I
7	take the statement to mean Brayton Point
8	Unit 1 meaning the whole unit, then I
9	still can't tell. I can guess and say it
10	is the it is the inlet would be the
11	Hg S-CEMS following the air heater and the
12	outlet would be the Hg S-CEMS at the exit
13	of the second ESP. I can guess and say
14	that.
15	MR. AYERS: Certainly you would
16	think that inlet and outlet would mean
17	outlet would be at the end of the
18	precipitator train and inlet would be at
19	the beginning of it, would you not?
20	MR. CICHANOWICZ: Yes.
21	MR. AYERS: And we talked earlier
22	about the lack of any removal of sulfur in
23	I'm sorry, mercury in the second
24	precipitator, didn't we? You testified to

1	
2	MR. CICHANOWICZ: Yes.
3	MR. AYERS: that after looking at
4	the exhibit? So if table 3 shows that
5	90.8 percent of the mercury is being
6	removed, then it must be being removed in
7	the first precipitator, is that not
8	correct?
9	MR. CICHANOWICZ: I don't know.
10	Because I believe it is the fly ash
11	carbon content in this paper?
12	HEARING OFFICER TIPSORD: If I may,
13	Mr. Ayers, I am not sure what you are
14	trying to get to. But we are asking an
15	awful lot of questions about what this
16	paper says and asking him to review it on
17	the spot. I think the paper speaks for
18	itself.
19	If you have a specific point you are
20	trying to get to, that's fine.
21	MR. AYERS: I do.
22	HEARING OFFICER TIPSORD: Like I
23	say, continuing to ask him to draw
24	conclusions from a paper he hasn't read I

1	think is a little unrealistic. The paper
2	does speak for itself. If you have a
3	specific point
4	MR. AYERS: I do. Is it not true
5	that well, let me put it this way.
6	Does this example, this plant, not
7	indicate that the increased that
8	increasing the size of the precipitator in
9	this case by adding a whole new
10	precipitator at the end of the train does
11	not increase mercury removal?
12	MR. ZABEL: I think I am going to
13	make the objection that actually you just
14	did. There are five locations on this
15	diagram for mercury monitors. They are
16	not identified. He has testified as to
17	what figure 3 shows. Unless we can really
18	read through this whole thing and identify
19	where those are and what the conditions of
20	data in table 3 was, was the FGD on, was
21	it off during the testing, the things he
22	asked him about on figure 3, I think it is
23	really unfair to ask him that question
24	without the opportunity to study the

1	table.
2	HEARING OFFICER TIPSORD: I will
3	give you an opportunity to respond to
4	that, Mr. Ayers.
5	MR. AYERS: I think we will pass on
6	this and come back to it if we have a
7	chance. We have had a chance to read it
8	and they have.
9	HEARING OFFICER TIPSORD: We will
10	end questioning for now.
11	MR. AYERS: Yes.
12	HEARING OFFICER TIPSORD: Question
13	70.
14	MR. CICHANOWICZ: As far as you
15	know, is an even, parallel and somewhat
16	laminar flow important for good ESP
17	performance?
18	Well-behaved flow entering an ESP is
19	desired to improve particulate removal
20	performance.
21	A, if so, do you know why? A
22	quiescent, low turbulence flow does not
23	interfere with the migration velocity of a
24	charged particle in transit to the

1	collecting plate and also minimizes any
2	possible re-entrainment of the particles
3	into the flue gas stream.
4	Question 71, don't ESP suppliers
5	MR. AYERS: I am sorry, I do have
б	one question.
7	HEARING OFFICER TIPSORD: Okay.
8	MR. AYERS: Is grade entrainment a
9	reason why maximizing laminar flow is
10	considered important?
11	MR. CICHANOWICZ: Well, I don't know
12	that the flow is actually laminar. I
13	didn't calculate the number.
14	MR. AYERS: As a principal, though?
15	MR. CICHANOWICZ: As a principal,
16	what you don't want is turbulent
17	aggressive flow adjacent to the layer of
18	ash that is collected on the plate because
19	it will pull the ash back through the flue
20	gas stream.
21	71, don't ESP suppliers install
22	devices to attempt to achieve these flow
23	conditions?
24	Yes. Various baffle-plate or

perforated plates or turning vanes are

2	used to effect good flow distribution.
3	72, do you think that TOXECON II
4	possibly disturbs this flow field within
5	the ESP by blowing carbon right into the
6	middle of it?
7	The injection of carbon and the
8	carrier air may distort the flow profile
9	within the middle of an ESP.
10	73, in light of the fact that the
11	Monroe ESP was smaller than the effective
12	ESP, open parenthesis, what remained after
13	sorbent injection, close parenthesis, at
14	Coal Creek's TOXECON II site and no
15	problems were cited at Monroe, is it
16	likely that problems at Coal Creek's
17	TOXECON II test were a result of
18	challenges with the TOXECON II technology
19	and not an ESP limitation that would exist
20	if sorbent were injected upstream of the
21	ESP?
22	Yes, it is possible that that is
23	true.
24	74, on page 40 of your testimony you

1 state "carbon, like any other solid, can

2	accumulate within the ductwork or internal
3	surfaces of the ESP and influence the
4	electrical properties. Specifically,
5	erratic electrical behavior was witnessed
6	at Yates due to shortening of current over
7	insulators. And deposits on insulators at
8	Coal Creek may have contributed to the T/R
9	set failure. This problem, which perhaps
10	contributed to a compromise in ESP
11	performance at both sites, may not be a
12	fatal law. But additional tests to
13	evaluate new insulator designs or cleaning
14	equipment is required." Wasn't the Coal
15	Creek test a TOXECON II test where carbon
16	is injected into the middle of the ESP
17	rather than upstream of the ESP? Yes.
18	MR. AYERS: I am sorry, could I
19	follow up?
20	HEARING OFFICER TIPSORD: Yes.
21	MR. AYERS: Your answer was yes?
22	MR. CICHANOWICZ: Yes, my answer was
23	yes.
24	MR. AYERS: So that's different from

1	injecting the sorbent into the ductwork at
2	a point upstream of the ESP hardware where
3	it has additional time to mix and flow
4	more smoothly through the ESP; is that
5	right?
6	MR. CICHANOWICZ: That's a different
7	application, yes.
8	MR. AYERS: But it is a different
9	situation?
10	MR. CICHANOWICZ: Yes.
11	MR. AYERS: Is the TOXECON II a
12	technology that's considered still under
13	development?
14	MR. CICHANOWICZ: In my opinion,
15	yes.
16	MR. AYERS: So let's focus for a
17	minute on the simpler technology, just
18	injecting sorbent upstream. Even without
19	sorbent injection for mercury control, is
20	there a lot of carbon in some fly ash?
21	MR. CICHANOWICZ: Well, as we
22	discussed with the good Mr. Nelson
23	yesterday, carbon can vary from
24	generally people like to have it less than

Τ	live percent. And those cases are
2	successful in having it less than five
3	percent, in many cases less than two and
4	three percent.
5	MR. AYERS: If I'm not mistaken,
6	your testimony did not discuss any data
7	from any other plant besides Yates 1 that
8	had a small ESP where sorbent injection
9	upstream of the ESP allegedly showed
10	problems; is that correct?
11	MR. CICHANOWICZ: That is what the
12	yes, that is the only item in
13	testimony, absent the introduction of the
14	Conesville data yesterday with the
15	Exhibit 5-2.
16	MR. AYERS: Referring to the
17	paragraph I'm sorry, is that I am
18	sorry, that's your question.
19	MR. ZABEL: No, it is yours. It was
20	his to answer.
21	MR. AYERS: It was an earlier
22	question.
23	MR. CICHANOWICZ: So what am I
24	doing?

1	HEARING OFFICER TIPSORD: 75.
2	MR. AYERS: Go ahead with 75.
3	MR. CICHANOWICZ: Referring to
4	paragraph on page 11 of the paper entitled
5	"Sorbent Injection for Mercury Control
6	Upstream of Small SCA ESPs" by Dombrowski
7	that is referenced in the TSD
8	MR. AYERS: If it would be helpful,
9	since this is a document that was in the
10	TSD, you may not have it right in front of
11	you, we can distribute this document
12	again. Maybe you have had a chance to
13	consult with it already. I don't know. I
14	do want to ask some follow-up questions.
15	So you may want to
16	MR. CICHANOWICZ: Then why don't you
17	distribute.
18	MR. AYERS: Thank you. It is No. 9.
19	TSD.
20	HEARING OFFICER TIPSORD: Document
21	No. 9 in what part of the TSD, the
22	appendices?
23	MR. KIM: I think it is a reference
24	document.

1	HEARING OFFICER TIPSORD: It is in
2	the big box, then I don't have a copy of
3	it. That's okay.
4	MR. KIM: Big box document No. 9.
5	MR. AYERS: You can go ahead and if
6	you can answer questions A and B now,
7	Mr. Cichanowicz.
8	MR. CICHANOWICZ: As you can
9	imagine, I read this paragraph and I have
10	an answer for you. But I did want the
11	document to be in front of me.
12	Does this indicate any problem from
13	carbon injection during this test?
14	No. But the observation is based on
15	single-point measurements of particulate
16	matter emissions which do not present a
17	complete picture of particulate matter
18	emissions.
19	B, could you please read the fourth
20	bullet under conclusion on page 12? Does
21	this indicate any problem from carbon
22	injection during this test? I will read
23	that fourth bullet. The fourth bullet
24	states "carbon injection caused no

Т	significant increase in ESP outlet
2	particulate concentration in unit 1 or 2
3	as measured by a single-point EPA Method
4	17."
5	I wish to note, again these results,
6	based on a single-point method acquired by
7	Method 17 are inadequate to characterize
8	any change in PM emissions. Specifically,
9	a single-point Method 17 measurement would
10	not comprise an adequate compliance test.
11	More meaningful results are shown in
12	figure 3-31 on page 3-52 of the quarterly
13	report from April to June of 2005, which
14	shows the variability in PM emissions on a
15	pounds per million BTU basis, the standard
16	to which the unit is held accountable to.
17	The upper right-hand corner of the figure
18	is entitled Method 17 traverse data, as
19	this data were obtained with a four-point
20	traverse and would comprise a compliance
21	test.
22	So, basically, it's a single-point
23	test. And if single-point tests were
24	adequate for compliance, it wouldn't be a

1	requirement for traversing the data. The
2	data in this paper was the result of a
3	screening study conducted early. After
4	the screening study, the owner operated a
5	longer term test where they were able to
6	have the time to conduct a multi-point
7	traverse data. And that data I think does
8	indicate there are particulate problems.
9	MR. STAUDT: Could you read back the
10	cite citation ?
11	MR. CICHANOWICZ: It is the
12	quarterly report from April to June 2005.
13	MR. STAUDT: Page and figure,
14	please?
15	MR. CICHANOWICZ: Page 3-52,
16	figure 3-31.
17	MR. AYERS: Which unit has the
18	smaller ESP, Yates unit 1 or unit 2?
19	MR. CICHANOWICZ: I don't have the
20	SCAs in front of me. I don't know. It is
21	in the report. I don't know them offhand.
22	MR. AYERS: I think it is in the
23	paper. I believe you will find it on
24	table 1, page 4 of the exhibit we

1	introduced.
2	MR. CICHANOWICZ: Yates 2 has the
3	smaller ESP.
4	MR. AYERS: And no problems are
5	reported in this paper in the unit 2 ESP,
6	even though this is smaller than unit 1;
7	is that correct?
8	MR. ZABEL: Again we are back to
9	asking questions about what's in a report
10	that the witness hasn't read, at least not
11	recently.
12	HEARING OFFICER TIPSORD: He was
13	specifically asked questions on his
14	report. We are looking at the Dombrowski
15	paper. He was specifically asked
16	questions on it, so I would expect him to
17	be familiar with it.
18	MR. ZABEL: Right. But he is asking
19	what it says in general and he hasn't read
20	it today. To recall that I am happy to
21	let the witness answer if he recalls. But
22	I want the record to recognize he isn't
23	reading it today.
24	HEARING OFFICER TIPSORD: Yes,

1	absolutely. Agreed. And, Mr. Ayers, it
2	would be helpful if you could point him to
3	the information that you are asking him
4	about. If you are asking him about
5	something that's in the report, you can
6	tell him where you are looking. That
7	would be helpful. You are going to have
8	to be a little more specific because we
9	are taking a lot of time looking for
10	references that you guys are asking about.
11	So you should be able to find it easily.
12	MR. ZABEL: The prepared question
13	asked him to look at one paragraph. He
14	had 99 questions to answer. If he would
15	have read every reference in the 99
16	questions, we wouldn't have had him on the
17	stand until Christmas.
18	HEARING OFFICER TIPSORD: I
19	understand.
20	MR. AYERS: No reported the
21	question I was asking is whether there
22	were no reported problems on either unit 1
23	or unit 2. And that goes back to the
24	conclusion which you read earlier I

1	believe.
2	MR. ZABEL: I think that question
3	was asked and answered.
4	MR. AYERS: Asked and answered.
5	Let's discuss the issue related to
6	long-term tests at Yates. Is it your
7	testimony that the injection of activated
8	carbon is responsible for several problems
9	in the operation of the ESP?
10	MR. CICHANOWICZ: My testimony is
11	that sorbent injection can induce higher
12	particulate matter through break-through
13	of sorbent.
14	MR. AYERS: And you, specifically
15	speaking, include Yates?
16	MR. CICHANOWICZ: Yes.
17	MR. AYERS: Would you begin then to
18	discuss this issue starting with question
19	76?
20	MR. CICHANOWICZ: 76, according to
21	the report titled "Sorbent Injection for
22	Small Esp Mercury Control in Low Sulfur
23	Eastern Bituminous Coal Flue Gas,
24	Quarterly Technical Progress Report,

1	April 1 to June 30, 2005," the Yates ESP
2	has a design basis flow rate of 490,000
3	ACFM at a treatment rate of 17 pounds per
4	million ACF, roughly the highest injection
5	rate experienced at Yates 1. How much
6	carbon is being introduced to the gas
7	stream per hour? Approximately
8	500 pounds.
9	HEARING OFFICER TIPSORD: I have a
10	point of clarification. I'm sorry. The
11	paper referenced in this question is this
12	a quote from Mr. Cichanowicz' testimony or
13	is this another paper that is found
14	elsewhere in the record?
15	MR. AYERS: This is from the
16	paper
17	HEARING OFFICER TIPSORD: The
18	Dombrowski paper?
19	MR. CICHANOWICZ: No.
20	HEARING OFFICER TIPSORD: The title
21	is different?
22	MR. AYERS: Yes, not Dombrowski. It
23	is Exhibit 71 from the first hearing.
24	HEARING OFFICER TIPSORD: And then

1	we are on 76 A.
2	MR. CICHANOWICZ: A, how much at
3	around six pounds per million ACF,
4	approximately 176 pounds.
5	Question 77, according to 2004
6	EIA Form 767 data submitted by the plant
7	owner, the average heating value of the
8	fuel was about 12,400 BTUs per pound and
9	the average ash was about 11.4 percent.
10	Using this or other information you may
11	have from the owner, please make a rough
12	estimate of how much fly ash enters the
13	Yates ESP each hour at full load. If you
14	relied on other information from the plant
15	owner, please describe the information.
16	Ash loading entering the ESP is
17	estimated to be 7,355 pounds per hour,
18	assuming a plant generating capacity of
19	100 megawatts, heat rate of 10,000 BTUs
20	per kilowatt hour at 100 percent capacity
21	factor.
22	78
23	HEARING OFFICER TIPSORD: Excuse me,
24	I am going have to ask, when we have

1	something referenced in the question, this
2	is a part of the record, is it not?
3	MR. AYERS: Exhibit 71?
4	HEARING OFFICER TIPSORD: According
5	to the 2004 EIA Form 767?
6	MR. ZABEL: For the record that is
7	the Energy Information Agency, which is a
8	division of the Department of Energy. It
9	is a published and publicly available
10	document.
11	HEARING OFFICER TIPSORD: Thank you.
12	MR. AYERS: Could you turn your
13	attention to the report "Sorbent Injection
14	for Small Esp Mercury Control and Low
15	Sulfur Bituminous Coal Flue Gas Quarterly
16	Technical Progress Report, April 1 to
17	June 30, 2005"?
18	MS. BASSI: Is that Exhibit 71?
19	MR. AYERS: I believe that's
20	Exhibit 71, yes. Would you turn to
21	page 3-9 of that document?
22	MR. BONEBRAKE: What page did you
23	say?
24	MR. AYERS: 3-9. And if you would

1	read the last paragraph on that page.
2	MR. CICHANOWICZ: "There was no
3	apparent increase in the carbon content of
4	the ESP ash as measured by percent LOI for
5	the activated carbon injection tests
6	compared to baseline tests. As shown in
7	figure 3-10, the mercury content of both
8	the bottom ash and the ESP fly ash samples
9	were directly related to LOI percent of
10	the ash."
11	MR. AYERS: Is it possible in that
12	statement it would be likely that there
13	was no apparent increase in property
14	content of the ESP fly ash because the
15	carbon already in the fly ash so far
16	exceeded the amount of carbon being added?
17	MR. BONEBRAKE: I'm sorry, was the
18	question is it possible or is it likely?
19	I couldn't tell which of the questions
20	MR. AYERS: I will settle for
21	likely. Is it likely? I used both.
22	MR. CICHANOWICZ: It is possible. I
23	would have to calculate do a mass
24	calculation to say it is likely. But it

1	is certainly possible.
2	MR. AYERS: According to table 3-8
3	of the Yates report on page 3-12, would
4	you agree that the LOI of that plant is in
5	the range of ten percent or so, sometimes
6	more?
7	MR. CICHANOWICZ: Yes.
8	MR. AYERS: Isn't that significantly
9	higher than the amount of carbon from
10	activated carbon?
11	MR. CICHANOWICZ: Yes, it is.
12	MR. AYERS: So is it possible that
13	the carbon from fly ash caused any
14	problems that may have been experienced?
15	MR. CICHANOWICZ: It's possible that
16	the carbon in the ash is responsible for
17	some of the ESP data, yes.
18	MR. AYERS: Thank you. Question 78.
19	HEARING OFFICER TIPSORD: Okay,
20	question 78.
21	MR. CICHANOWICZ: You state on
22	page 40 of your testimony "first, the PM
23	emissions standards for Yates are well
24	below the Georgia limit of 0.2 pounds per

1	million BTU. The owner frequently
2	operates these units at less than 0.10
3	pounds per million BTU, which typifies PM
4	limits in other regions of their system,
5	open parenthesis, for example, Alabama
6	requires a PM limit of 0.10 pounds per
7	million BTU, close parenthesis. Data
8	presented in the quarterly report to the
9	DOE summarizing these results, Richardson
10	2005, shows baseline PM emissions less
11	than 0.10 pounds per million BTU." Is
12	this report by Richardson the sole source
13	of your statement or there other sources?
14	My understanding of the PM emission
15	standards for Yates units 1 to 4 and how
16	the standards compare to other units in
17	the Southern Company System was conveyed
18	to me in a July 20th telephone
19	conversation with Mr. Mark Berry of
20	Southern Company, the staff engineer in
21	charge of ACI testing.
22	Question 79
23	MR. AYERS: I'm sorry, I have some
24	follow-up questions on this. There is a

1	scrubber arter the ESP at this plant, is
2	there not?
3	MR. CICHANOWICZ: On unit 1 there
4	is.
5	MR. AYERS: And the emission limits
6	apply to stack emissions. And the PM
7	emissions of concern for compliance are a
8	stack and after the scrubber, isn't that
9	correct?
10	MR. ZABEL: That is a legal
11	question, but I will let the witness
12	answer, if he knows.
13	MR. CICHANOWICZ: Well, the PM
14	limits that were described to me were
15	basically as measured at the exit of the
16	ESP with Method 17 that's shown in the
17	figure.
18	MR. AYERS: Figure 3-31 of the
19	long-term test report on page 3-52 shows
20	Method 17 particulate measures at the ESP
21	outlet planted against carbon injection
22	rate. We are still looking at Exhibit 71
23	MR. CICHANOWICZ: Okay. Thank you.
24	MR. AYERS: So that figure shows

1	particulate measures at the ESP outlet
2	plotted against carbon injection rate,
3	correct?
4	MR. CICHANOWICZ: That is correct.
5	MR. AYERS: Now, the baseline range
6	is where there is no sorbent being
7	injected and we compare the results of
8	testing of the sorbent with the baseline,
9	correct?
10	MR. CICHANOWICZ: Correct.
11	MR. AYERS: Could you state how many
12	sorbent test points lie above the baseline
13	range?
14	MR. CICHANOWICZ: I count six.
15	MR. AYERS: And how many sorbent
16	test points lie below the baseline range?
17	MR. CICHANOWICZ: I count six.
18	MR. AYERS: And how many sorbent
19	test points lie within the baseline range?
20	MR. CICHANOWICZ: I count seven or
21	eight.
22	MR. AYERS: Would you agree that the
23	test measurements show more scatter in the
24	baseline measurements both above and below

1	the baseline?
2	MR. CICHANOWICZ: I would state that
3	and this is what I was told my Mark
4	Berry, that they did not have exceedences
5	or they did not have PM emissions above
6	the 0.10 level until they injected
7	activated carbon. And certainly there is
8	a lot of variability in this.
9	Dr. Staudt testified to this in
10	Springfield, and it's still true. There
11	is much data above as below. But it
12	doesn't detract from the fact that until
13	activated carbon was used, this type of
14	when they had done PM emissions, they had
15	not seen this type of variability. And
16	when you look at the baseline data,
17	granted there is three or four points, but
18	it is within the range they are used to
19	seeing.
20	MR. AYERS: This is commentary that
21	is based on a conversation with someone
22	outside the room? Yes?
23	MR. CICHANOWICZ: Yes.
24	MR. AYERS: Do you know when the

1	baseline measurements were taken relative
2	to the tests with sorbent?
3	MR. CICHANOWICZ: My understanding
4	was that the long-term tests, they the
5	data was taken basically at the at the
6	same time that they were conducting the
7	parametric variations. That is what
8	distinguished the tests in this report,
9	that's different from what's in the mega
10	symposium paper, is that these tests were
11	long term. They allowed time for the
12	system to come to equilibrium and they
13	took the time to do the traverse.
14	What Mark told me and again this
15	is based on a telephone conversation
16	was that they rushed through the early
17	parametric test for the reason of getting
18	data for the paper that you handed out and
19	they didn't take the time to do full
20	traverse measurements. They were just
21	trying to get a sense for what the mercury
22	removal would be as a function of sorbent
23	because they had a deliverable.
24	But once that was done, the next

1	phase of testing was more relaxed and they
2	had the time to do the full traverse.
3	MR. AYERS: So it is your
4	understanding that baseline measurements
5	and the test measurements were taken at
6	the same time?
7	MR. CICHANOWICZ: Yes.
8	MR. AYERS: Could you turn to
9	page 334 of the same exhibit, 3-34. And
10	read bullet No. 8.
11	MR. ZABEL: Do you want him to read
12	it or read it into the record?
13	MR. AYERS: I think read it into the
14	record, if you would.
15	MR. CICHANOWICZ: "Method 17
16	traverses were conducted in the ESP outlet
17	duct to quantify ESP outlet particulate
18	emissions. A handful of the data
19	collected exceeded the baseline, open
20	parenthesis, no injection, close
21	parenthesis. ESP outlet emissions
22	measured in three method 5 traverses from
23	spring 2004. Furthermore, a few data
24	points exceeded the compliance limit for

T	rates unit 1, open parenthesis,
2	0.24 pounds per million BTU, close
3	parenthesis. However, the unit itself was
4	in compliance because the downstream PBR
5	removed the broken-through particulate
6	matter, open parenthesis, see next section
7	for further discussion, close
8	parenthesis."
9	MR. AYERS: That's sufficient, I
10	think. Doesn't that say that the baseline
11	tests were taken in the spring of 2004
12	over six months earlier than the tests
13	with the sorbent in November 2004 or
14	January 2005?
15	MR. CICHANOWICZ: That is what that
16	says.
17	MR. AYERS: Now, could you turn to
18	page 2-16 of the same document? And read
19	the second to last paragraph. You don't
20	need to read it into the record.
21	MR. CICHANOWICZ: I'm sorry, you
22	want me to read it into the record or not?
23	MR. AYERS: You don't need to read
24	it into the record. But I just wanted to

1	ask you, does that say that the Method 17
2	traverses for the long-term test with the
3	sorbent were conducted during the week of
4	November 30th and December 7th of 2004?
5	MR. CICHANOWICZ: That is what that
6	says, yes.
7	MR. AYERS: So these tests that were
8	compared to the February baseline were
9	actually done in December, correct?
10	MR. CICHANOWICZ: That's what the
11	report says, yes.
12	MR. AYERS: Is there a possibility
13	then that the conditions are not quite the
14	same as the baseline conditions in
15	February of 2004 and the conditions under
16	the during the test in December of
17	2004?
18	MR. CICHANOWICZ: That's possible,
19	yes.
20	MR. AYERS: For example, there might
21	be differences in the fuel that would
22	affect the performance?
23	MR. CICHANOWICZ: Yes.
24	MR. AYERS: Thank you.

1	HEARING OFFICER TIPSORD: That was
2	question 78. I would like to go a little
3	bit longer to try to get through this
4	paper. So we will see how we do. I will
5	try not to break you off in the middle,
6	but let's go to question 79.
7	MR. AYERS: We have quite a few
8	questions on this. I think it will take
9	awhile.
10	HEARING OFFICER TIPSORD: All right.
11	We better take a break. We will come back
12	at 1:00 o'clock.
13	(Whereupon the
14	proceedings in the
15	above-entitled cause
16	were adjourned until
17	August 17, 2006, at
18	9:00 a.m.)
19	
20	
21	
22	
23	
24	

1	STATE OF ILLINOIS)
2) SS: COUNTY OF LAKE)
3	I, Cheryl L. Sandecki, a Notary
4	Public within and for the County of Lake
5	and State of Illinois, and a Certified
6	Shorthand Reporter of the State of
7	Illinois, do hereby certify that I
8	reported in shorthand the proceedings had
9	at the taking of said hearing and that the
10	foregoing is a true, complete, and correct
11	transcript of my shorthand notes so taken
12	as aforesaid, and contains all the
13	proceedings given at said hearing.
14	
15	
16	Notary Public, Cook County, Illinois C.S.R. License No. 084-03710
17	C.S.R. LICENSE NO. U04-U3/IU
18	
19	
20	
21	
22	
23	
24	